Amazon cover image
Image from Amazon.com

Novel porous media formulation for multiphase flow conservation equations / William T. Sha.

By: Material type: TextTextPublication details: New York : Cambridge University Press, 2011.Description: xliii, 214 p. : ill. ; 24 cmISBN:
  • 9781107012950 (hardback)
  • 9781107630178
Subject(s): DDC classification:
  • 532.56 SHA-W 22
LOC classification:
  • TA357.5.M84 S52 2011
Other classification:
  • TEC009070
Contents:
Machine generated contents note: 1. Introduction; 2. Averaging relations; 3. Phasic conservation equations and interfacial balance equations; 4. Local-volume-averaged conservation equations and interfacial balance equations; 5. Time averaging of local-volume-averaged conservation equations or time-volume-averaged conservation equations and interfacial balance equations; 6. Time averaging in relation to local volume averaging and time-volume averaging versus volume-time averaging; 7. COMMIX code capable of computing detailed micro-flow fields with fine computational mesh and high-order differencing scheme; 8. Discussion and concluding remarks.
Summary: "This book introduces the novel porous media formulation for multiphase flow conservation equations, a new, flexible, and unified approach to solve real-world engineering problems"--Summary: "William T. Sha first proposed the novel porous media formulation in an article in Nuclear Engineering and Design in 1980. The novel porous media formulation represented a new, flexible, and unified approach to solve real-world engineering problems. The novel porous media formulation uses the concept of volume porosity, directional surface porosities, distributed resistance, and distributed heat source and sink. Most practical engineering problems involve many complex shapes and sizes of solid internal structures whose distributed resistance is impossible to quantify accurately. The concept of directional surface porosities eliminates the sole reliance on empirical estimation of the distributed resistance of complex-shaped structures often involved in the analysis. The directional surface porosities thus greatly improve the resolution and modeling accuracy and facilitate mock-ups of numerical simulation models of real engineering systems. Both the continuum and conventional porous media formulations are subsets of the novel porous media formulation. Moreover, fluid-structure interactions are explicitly accounted for in this formulation"--
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Shelving location Call number Status Date due Barcode Item holds
Books Books BITS Pilani Hyderabad 530 General Stack (For lending) 532.56 SHA-W (Browse shelf(Opens below)) Available 27543
Total holds: 0

Includes bibliographical references and index.

Machine generated contents note: 1. Introduction; 2. Averaging relations; 3. Phasic conservation equations and interfacial balance equations; 4. Local-volume-averaged conservation equations and interfacial balance equations; 5. Time averaging of local-volume-averaged conservation equations or time-volume-averaged conservation equations and interfacial balance equations; 6. Time averaging in relation to local volume averaging and time-volume averaging versus volume-time averaging; 7. COMMIX code capable of computing detailed micro-flow fields with fine computational mesh and high-order differencing scheme; 8. Discussion and concluding remarks.

"This book introduces the novel porous media formulation for multiphase flow conservation equations, a new, flexible, and unified approach to solve real-world engineering problems"--

"William T. Sha first proposed the novel porous media formulation in an article in Nuclear Engineering and Design in 1980. The novel porous media formulation represented a new, flexible, and unified approach to solve real-world engineering problems. The novel porous media formulation uses the concept of volume porosity, directional surface porosities, distributed resistance, and distributed heat source and sink. Most practical engineering problems involve many complex shapes and sizes of solid internal structures whose distributed resistance is impossible to quantify accurately. The concept of directional surface porosities eliminates the sole reliance on empirical estimation of the distributed resistance of complex-shaped structures often involved in the analysis. The directional surface porosities thus greatly improve the resolution and modeling accuracy and facilitate mock-ups of numerical simulation models of real engineering systems. Both the continuum and conventional porous media formulations are subsets of the novel porous media formulation. Moreover, fluid-structure interactions are explicitly accounted for in this formulation"--

There are no comments on this title.

to post a comment.
An institution deemed to be a University Estd. Vide Sec.3 of the UGC
Act,1956 under notification # F.12-23/63.U-2 of Jun 18,1964

© 2015 BITS-Library, BITS-Hyderabad, India.