Amazon cover image
Image from Amazon.com

Wearable sensors : applications, design and implementation / [edited by] Subhas Chandra Mukhopadhyay, Tarikul Islam.

Contributor(s): Material type: TextTextSeries: IOP (Series). Release 4. | IOP expanding physics | IOP series in sensors and sensor systemsPublisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2017]Description: 1 online resource (various pagings) : illustrations (chiefly color)Content type:
  • text
Media type:
  • electronic
Carrier type:
  • online resource
ISBN:
  • 9780750315050
  • 9780750315043
Subject(s): Additional physical formats: Print version:: No titleDDC classification:
  • 004.167 23
LOC classification:
  • QA76.592 .W437 2017eb
Online resources: Also available in print.
Contents:
1. Wearable sensors for physiological parameter measurements : physics, characteristics, design and applications -- 1.1. Introduction -- 1.2. Types of wearable sensors -- 1.3. Wearable sensors for animal health -- 1.4. Working principles of wearable sensors -- 1.5. Issues in the fabrication of wearable sensors -- 1.6. Fabrication of wearable sensors using electrical properties -- 1.7. Electrochemical wearable sensors -- 1.8. Piezoelectric wearable sensors -- 1.9. Fabrication of wearable sensors -- 1.10. Deposition of sensing film on the electrode -- 1.11. Applications of wearable sensors -- 1.12. Conclusions
2. Wearable flexible sensors : fabrication and characterization -- 2.1. Introduction -- 2.2. Fabrication of flexible sensors -- 2.3. Fabrication techniques -- 2.4. Functionalization of nanoparticles -- 2.5. Sensing parameters -- 2.6. Conclusion
3. Smart circuits for signal conditioning of wearable medical sensors -- 3.1. Introduction -- 3.2. Estimation of blood parameters through fingertip photoplethysmography -- 3.3. PPG device design considerations -- 3.4. Heart rate monitoring through a PPG-based smart wearable device -- 3.5. Cerebral oxygenation monitoring through an NIRS-HDtDCS-based wearable device -- 3.6. Heart sounds and measurements using PCG -- 3.7. Conclusion
4. GUI-based software development for sensor data collection, data extraction and data analysis using Python frameworks -- 4.1. Introduction -- 4.2. Software framework for sensor data reception, storage and analysis using Visual Studio-2017 and Python -- 4.3. Design and development of GUI -- 4.4. Conclusion
5. Medical IoT systems : architecture and security -- 5.1. Introduction -- 5.2. System processes -- 5.3. Secure routing -- 5.4. The cloud-side -- 5.5. System implementation -- 5.6. Results -- 5.7. Conclusion
6. IoT for wearable devices : access control and identity management -- 6.1. Introduction -- 6.2. Security for the IoT -- 6.3. Discussion -- 6.4. Conclusion
7. Security and privacy in wearable body sensor networks -- 7.1. Introduction -- 7.2. Generalized system architecture of a WBSN -- 7.3. Security requirements in a WBSN -- 7.4. Threats and attacks in WBSN -- 7.5. Possible solutions for security and privacy in a WBSN -- 7.6. Conclusions
8. Cybersecurity for wireless implants -- 8.1. Introduction -- 8.2. Implantable medical devices -- 8.3. Ethical hacking demonstrations -- 8.4. IMD security requirements -- 8.5. Trade-offs in IMD security design -- 8.6. Security design supporting emergency access -- 8.7. Security design supporting regular check-ups -- 8.8. Security design addressing resource constraints -- 8.9. Discussion and future research -- 8.10. Conclusions
9. VitalMON : wearable sensor system for temperature monitoring -- 9.1. Introduction -- 9.2. System architecture -- 9.3. Hardware and firmware designs -- 9.4. Thermal-infrared-based TM temperature measurement with P-VSM -- 9.5. Feasibility study of WTA for measuring TM temperature -- 9.6. User data privacy and security considerations -- 9.7. Ethical issues -- 9.8. Summary
10. Low-memory image coder for wearable visual sensors -- 10.1. Introduction -- 10.2. Low-memory image coders for WVSs -- 10.3. Results and discussion -- 10.4. Conclusion
11. An IoT platform for an insole-based wearable system -- 11.1. Introduction -- 11.2. Background work -- 11.3. Integrating SmartStep into the IoT framework -- 11.4. Usage scenarios -- 11.5. Challenges to be addressed to enable SmartStep as an IoT node -- 11.6. Hardware design to enable SmartStep as an IoT node -- 11.7. Battery subsystem and wireless charging -- 11.8. Fault tolerant firmware design for SmartStep -- 11.9. Fault tolerant Android application for BaseStation -- 11.10. Infrastructure for transferring the data from the SmartStep to a cloud server -- 11.11. Testing scenario : longitudinal case study -- 11.12. Future directions -- 11.13. Conclusion
12. HRV-based biometric privacy-preserving and security mechanism for wireless body sensor networks -- 12.1. Introduction -- 12.2. Related work -- 12.3. Security requirements for healthcare system using WBSNs -- 12.4. Background -- 12.5. A wearable platform for physiological signal collection -- 12.6. HRV-based biometric security mechanism (HBSM) for WBSNs -- 12.7. Experimental results and discussion -- 12.8. Conclusion.
Abstract: With the ability to monitor a vast range of physiological parameters, combined with wireless technology, wireless sensor networks and the Internet of Things, wearable sensors are revolutionising the field of digital health monitoring. In addition to applications in health monitoring, such technology is being used to monitor the state of our living environment and even the quality of our foods and the wellbeing of livestock. Written for scientists, engineers and practitioners by an international collection of authors, this book reviews the fundamentals of wearable sensors, their function, design, fabrication and implementation. Their application and advanced aspects including interface electronics and signal processing for easy interpretation of data, data transmission, data networking, data security, and privacy are also included.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Institue of Physics Institue of Physics BITS Pilani Hyderabad 004.167 (Browse shelf(Opens below)) Available IOP00046
Total holds: 0

"Version: 20171201"--Title page verso.

Includes bibliographical references.

1. Wearable sensors for physiological parameter measurements : physics, characteristics, design and applications -- 1.1. Introduction -- 1.2. Types of wearable sensors -- 1.3. Wearable sensors for animal health -- 1.4. Working principles of wearable sensors -- 1.5. Issues in the fabrication of wearable sensors -- 1.6. Fabrication of wearable sensors using electrical properties -- 1.7. Electrochemical wearable sensors -- 1.8. Piezoelectric wearable sensors -- 1.9. Fabrication of wearable sensors -- 1.10. Deposition of sensing film on the electrode -- 1.11. Applications of wearable sensors -- 1.12. Conclusions

2. Wearable flexible sensors : fabrication and characterization -- 2.1. Introduction -- 2.2. Fabrication of flexible sensors -- 2.3. Fabrication techniques -- 2.4. Functionalization of nanoparticles -- 2.5. Sensing parameters -- 2.6. Conclusion

3. Smart circuits for signal conditioning of wearable medical sensors -- 3.1. Introduction -- 3.2. Estimation of blood parameters through fingertip photoplethysmography -- 3.3. PPG device design considerations -- 3.4. Heart rate monitoring through a PPG-based smart wearable device -- 3.5. Cerebral oxygenation monitoring through an NIRS-HDtDCS-based wearable device -- 3.6. Heart sounds and measurements using PCG -- 3.7. Conclusion

4. GUI-based software development for sensor data collection, data extraction and data analysis using Python frameworks -- 4.1. Introduction -- 4.2. Software framework for sensor data reception, storage and analysis using Visual Studio-2017 and Python -- 4.3. Design and development of GUI -- 4.4. Conclusion

5. Medical IoT systems : architecture and security -- 5.1. Introduction -- 5.2. System processes -- 5.3. Secure routing -- 5.4. The cloud-side -- 5.5. System implementation -- 5.6. Results -- 5.7. Conclusion

6. IoT for wearable devices : access control and identity management -- 6.1. Introduction -- 6.2. Security for the IoT -- 6.3. Discussion -- 6.4. Conclusion

7. Security and privacy in wearable body sensor networks -- 7.1. Introduction -- 7.2. Generalized system architecture of a WBSN -- 7.3. Security requirements in a WBSN -- 7.4. Threats and attacks in WBSN -- 7.5. Possible solutions for security and privacy in a WBSN -- 7.6. Conclusions

8. Cybersecurity for wireless implants -- 8.1. Introduction -- 8.2. Implantable medical devices -- 8.3. Ethical hacking demonstrations -- 8.4. IMD security requirements -- 8.5. Trade-offs in IMD security design -- 8.6. Security design supporting emergency access -- 8.7. Security design supporting regular check-ups -- 8.8. Security design addressing resource constraints -- 8.9. Discussion and future research -- 8.10. Conclusions

9. VitalMON : wearable sensor system for temperature monitoring -- 9.1. Introduction -- 9.2. System architecture -- 9.3. Hardware and firmware designs -- 9.4. Thermal-infrared-based TM temperature measurement with P-VSM -- 9.5. Feasibility study of WTA for measuring TM temperature -- 9.6. User data privacy and security considerations -- 9.7. Ethical issues -- 9.8. Summary

10. Low-memory image coder for wearable visual sensors -- 10.1. Introduction -- 10.2. Low-memory image coders for WVSs -- 10.3. Results and discussion -- 10.4. Conclusion

11. An IoT platform for an insole-based wearable system -- 11.1. Introduction -- 11.2. Background work -- 11.3. Integrating SmartStep into the IoT framework -- 11.4. Usage scenarios -- 11.5. Challenges to be addressed to enable SmartStep as an IoT node -- 11.6. Hardware design to enable SmartStep as an IoT node -- 11.7. Battery subsystem and wireless charging -- 11.8. Fault tolerant firmware design for SmartStep -- 11.9. Fault tolerant Android application for BaseStation -- 11.10. Infrastructure for transferring the data from the SmartStep to a cloud server -- 11.11. Testing scenario : longitudinal case study -- 11.12. Future directions -- 11.13. Conclusion

12. HRV-based biometric privacy-preserving and security mechanism for wireless body sensor networks -- 12.1. Introduction -- 12.2. Related work -- 12.3. Security requirements for healthcare system using WBSNs -- 12.4. Background -- 12.5. A wearable platform for physiological signal collection -- 12.6. HRV-based biometric security mechanism (HBSM) for WBSNs -- 12.7. Experimental results and discussion -- 12.8. Conclusion.

With the ability to monitor a vast range of physiological parameters, combined with wireless technology, wireless sensor networks and the Internet of Things, wearable sensors are revolutionising the field of digital health monitoring. In addition to applications in health monitoring, such technology is being used to monitor the state of our living environment and even the quality of our foods and the wellbeing of livestock. Written for scientists, engineers and practitioners by an international collection of authors, this book reviews the fundamentals of wearable sensors, their function, design, fabrication and implementation. Their application and advanced aspects including interface electronics and signal processing for easy interpretation of data, data transmission, data networking, data security, and privacy are also included.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

Subhas Mukhopadhyay is professor of Mechanical and Electronics Engineering at Macquarie University, New South Wales, Australia, with a research interest in applications of sensors, sensor technology and networks, especially in the area of health-care. Tarikul Islam has many years of teaching and research experience, with specialism in instrumentation and measurement, sensors arrays and signal processing.

Title from PDF title page (viewed on January 11, 2018).

There are no comments on this title.

to post a comment.
An institution deemed to be a University Estd. Vide Sec.3 of the UGC
Act,1956 under notification # F.12-23/63.U-2 of Jun 18,1964

© 2015 BITS-Library, BITS-Hyderabad, India.