Amazon cover image
Image from Amazon.com

Magnetic excitations and geometric confinement : theory and simulations / Gary Matthew Wysin.

By: Contributor(s): Material type: TextTextSeries: IOP (Series). Release 2. | IOP expanding physicsPublisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2015]Description: 1 online resource (various pagings) : illustrations (some color)Content type:
  • text
Media type:
  • electronic
Carrier type:
  • online resource
ISBN:
  • 9780750310741
  • 9780750311298
Subject(s): Additional physical formats: Print version:: No titleDDC classification:
  • 539.7/25 23
LOC classification:
  • QC794.6.E9 W976 2015eb
Online resources: Also available in print.
Contents:
Preface -- 1. Introduction : geometrically confined magnetic systems -- 1.1. Magnetic order, dipoles and fields -- 1.2. Effects due to geometry -- 1.3. Exchange interactions -- 1.4. Anisotropic exchange couplings -- 1.5. Local anisotropies -- 1.6. Theory for linear and nonlinear magnetism -- 1.7. Simulations in magnetism
part I. Theory and simulation approaches for magnetism -- 2. Magnetism theory : spin models -- 2.1. Magnetic dipoles and magnetic ordering -- 2.2. Atomic dipoles -- 2.3. Local spin interaction models -- 2.4. Discrete exchange interactions -- 2.5. Ferromagnetic spin exchange in a continuum limit -- 2.6. Ferromagnetic exchange in micromagnetics -- 2.7. FM continuum limit on any lattice -- 2.8. Angular coordinates for classical spin direction -- 2.9. Classical spin mechanics -- 2.10. Classical spin torques -- 2.11. Quantum spin mechanics
3. Demagnetization effects in thin magnets -- 3.1. The magnetostatics problem in a finite magnet -- 3.2. The magnetic field inside a cylindrical magnet -- 3.3. Demagnetization fields in thin-film magnets -- 3.4. Use of fast Fourier transforms -- 3.5. Demagnetization in a thin permalloy magnet
4. Classical Monte Carlo simulation methods -- 4.1. Thermal equilibrium and ergodicity -- 4.2. Boltzmann distribution for thermal equilibrium -- 4.3. Importance sampling and the Metropolis algorithm -- 4.4. Monte Carlo simulation of a 2D XY model -- 4.5. Cluster algorithms for spin updates -- 4.6. Microcanonical Monte Carlo
5. Classical spin dynamics simulations -- 5.1. Landau-Lifshitz-Gilbert spin dynamics -- 5.2. Numerical time evolution for spin dynamics -- 5.3. Hybrid Monte Carlo-spin dynamics at T [greater than] 0 -- 5.4. Stochastic dynamics--thermal fluctuations in the planar rotor model -- 5.5. Numerical solutions of Langevin equations -- 5.6. Langevin spin dynamics -- 5.7. Dynamic correlation responses
part II. Excitations in magnetic systems -- 6. Spin waves : extended but low-dimensional systems -- 6.1. Spin waves in ferromagnetic models -- 6.2. Spin waves in antiferromagnetic models -- 6.3. Dynamic correlations of spin wave fluctuations -- 6.4. Nonlinear spin waves--ferromagnets
7. Solitons in magnetic chains -- 7.1. Nonlinear excitations : solitons in FM magnetic chains -- 7.2. Ferromagnetic sine-Gordon kink instability -- 7.3. [pi]-kinks in ferromagnetic chains -- 7.4. Magnetic kinks in antiferromagnetic chains
8. Vortices in layered or 2D ferromagnets -- 8.1. A 2D ferromagnet with easy-plane exchange anisotropy -- 8.2. In-plane and out-of-plane vortices -- 8.3. Vortex instability -- 8.4. Moving in-plane and out-of-plane vortices -- 8.5. The vortex unbinding transition -- 8.6. Monte Carlo simulations of the Berezinskii-Kosterlitz-Thouless transition -- 8.7. Dynamic correlations in XY models
9. Magnetic vortex core motion and internal dynamics -- 9.1. Thiele equations and vortex motion -- 9.2. Relation of vortex momentum to the Thiele equations -- 9.3. Vortex forces and motions -- 9.4. Some simple examples of vortex dynamics -- 9.5. Vortex-spin wave interactions and normal modes -- 9.6. Vortex mass obtained from vortex normal modes
10. Vortices in thin ferromagnetic nanodisks -- 10.1. Vortex states in magnetic nanodisks -- 10.2. Vortex-in-disk effective potentials -- 10.3. T = 0 Gyrotropic vortex motion in thin nanodisks -- 10.4. Thermalized vortex motion
11. Spin ices and geometric frustration -- 11.1. Spin ice and frustrated states -- 11.2. Magnetic monopoles and string excitations in spin ice -- 11.3. Square lattice spin ice energetics and order parameters -- 11.4. Dynamics in square lattice artificial spin ice -- 11.5. Triangular lattice artificial spin ice -- 11.6. Kagom�e lattice artificial spin ice -- 11.7. Langevin dynamics for Kagom�e ice in thermal equilibrium.
Abstract: Many intriguing dynamical effects in magnetism occur in geometrically confined systems, where the presence of closed boundaries leads to constraints on the magnetic moments. This, coupled with nonlinearity, allows various types of magnetic excitations such as solitons and vortices whose dynamics can be described with topological charges. These nonlinear excitations can also interact with the spin waves; especially important for describing a thermal equilibrium situation in a magnet. These charges may be probed and modified by applied magnetic pulses, and they may exhibit temperature dependencies. Such behaviour allows researchers to control and flip the topological charges at will so that they can be used as data bits. Confined magnetics also offer great promise for creating and manipulating the properties of composite media. Composites of magnetic or metallic particles in some nonmagnetic host material could be used to produce new supermaterials. Another interesting behaviour of confined magnetics is the presence of surface plasmon modes in fine metallic particles, and the interaction of a composite of such particles with electromagnetic radiation. In the book, Gary Wysin provides an overview of some model systems and their behaviour and effects.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Institue of Physics Institue of Physics BITS Pilani Hyderabad 539.7/25 (Browse shelf(Opens below)) Available IOP00032
Total holds: 0

"Version: 20151201"--Title page verso.

Includes bibliographical references.

Preface -- 1. Introduction : geometrically confined magnetic systems -- 1.1. Magnetic order, dipoles and fields -- 1.2. Effects due to geometry -- 1.3. Exchange interactions -- 1.4. Anisotropic exchange couplings -- 1.5. Local anisotropies -- 1.6. Theory for linear and nonlinear magnetism -- 1.7. Simulations in magnetism

part I. Theory and simulation approaches for magnetism -- 2. Magnetism theory : spin models -- 2.1. Magnetic dipoles and magnetic ordering -- 2.2. Atomic dipoles -- 2.3. Local spin interaction models -- 2.4. Discrete exchange interactions -- 2.5. Ferromagnetic spin exchange in a continuum limit -- 2.6. Ferromagnetic exchange in micromagnetics -- 2.7. FM continuum limit on any lattice -- 2.8. Angular coordinates for classical spin direction -- 2.9. Classical spin mechanics -- 2.10. Classical spin torques -- 2.11. Quantum spin mechanics

3. Demagnetization effects in thin magnets -- 3.1. The magnetostatics problem in a finite magnet -- 3.2. The magnetic field inside a cylindrical magnet -- 3.3. Demagnetization fields in thin-film magnets -- 3.4. Use of fast Fourier transforms -- 3.5. Demagnetization in a thin permalloy magnet

4. Classical Monte Carlo simulation methods -- 4.1. Thermal equilibrium and ergodicity -- 4.2. Boltzmann distribution for thermal equilibrium -- 4.3. Importance sampling and the Metropolis algorithm -- 4.4. Monte Carlo simulation of a 2D XY model -- 4.5. Cluster algorithms for spin updates -- 4.6. Microcanonical Monte Carlo

5. Classical spin dynamics simulations -- 5.1. Landau-Lifshitz-Gilbert spin dynamics -- 5.2. Numerical time evolution for spin dynamics -- 5.3. Hybrid Monte Carlo-spin dynamics at T [greater than] 0 -- 5.4. Stochastic dynamics--thermal fluctuations in the planar rotor model -- 5.5. Numerical solutions of Langevin equations -- 5.6. Langevin spin dynamics -- 5.7. Dynamic correlation responses

part II. Excitations in magnetic systems -- 6. Spin waves : extended but low-dimensional systems -- 6.1. Spin waves in ferromagnetic models -- 6.2. Spin waves in antiferromagnetic models -- 6.3. Dynamic correlations of spin wave fluctuations -- 6.4. Nonlinear spin waves--ferromagnets

7. Solitons in magnetic chains -- 7.1. Nonlinear excitations : solitons in FM magnetic chains -- 7.2. Ferromagnetic sine-Gordon kink instability -- 7.3. [pi]-kinks in ferromagnetic chains -- 7.4. Magnetic kinks in antiferromagnetic chains

8. Vortices in layered or 2D ferromagnets -- 8.1. A 2D ferromagnet with easy-plane exchange anisotropy -- 8.2. In-plane and out-of-plane vortices -- 8.3. Vortex instability -- 8.4. Moving in-plane and out-of-plane vortices -- 8.5. The vortex unbinding transition -- 8.6. Monte Carlo simulations of the Berezinskii-Kosterlitz-Thouless transition -- 8.7. Dynamic correlations in XY models

9. Magnetic vortex core motion and internal dynamics -- 9.1. Thiele equations and vortex motion -- 9.2. Relation of vortex momentum to the Thiele equations -- 9.3. Vortex forces and motions -- 9.4. Some simple examples of vortex dynamics -- 9.5. Vortex-spin wave interactions and normal modes -- 9.6. Vortex mass obtained from vortex normal modes

10. Vortices in thin ferromagnetic nanodisks -- 10.1. Vortex states in magnetic nanodisks -- 10.2. Vortex-in-disk effective potentials -- 10.3. T = 0 Gyrotropic vortex motion in thin nanodisks -- 10.4. Thermalized vortex motion

11. Spin ices and geometric frustration -- 11.1. Spin ice and frustrated states -- 11.2. Magnetic monopoles and string excitations in spin ice -- 11.3. Square lattice spin ice energetics and order parameters -- 11.4. Dynamics in square lattice artificial spin ice -- 11.5. Triangular lattice artificial spin ice -- 11.6. Kagom�e lattice artificial spin ice -- 11.7. Langevin dynamics for Kagom�e ice in thermal equilibrium.

Many intriguing dynamical effects in magnetism occur in geometrically confined systems, where the presence of closed boundaries leads to constraints on the magnetic moments. This, coupled with nonlinearity, allows various types of magnetic excitations such as solitons and vortices whose dynamics can be described with topological charges. These nonlinear excitations can also interact with the spin waves; especially important for describing a thermal equilibrium situation in a magnet. These charges may be probed and modified by applied magnetic pulses, and they may exhibit temperature dependencies. Such behaviour allows researchers to control and flip the topological charges at will so that they can be used as data bits. Confined magnetics also offer great promise for creating and manipulating the properties of composite media. Composites of magnetic or metallic particles in some nonmagnetic host material could be used to produce new supermaterials. Another interesting behaviour of confined magnetics is the presence of surface plasmon modes in fine metallic particles, and the interaction of a composite of such particles with electromagnetic radiation. In the book, Gary Wysin provides an overview of some model systems and their behaviour and effects.

Researchers.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader.

Gary Wysin is a professor of theoretical condensed matter physics at Kansas State University, USA. Research interests span theoretical and simulation studies in magnetism and optics.

Title from PDF title page (viewed on January 10, 2016).

There are no comments on this title.

to post a comment.
An institution deemed to be a University Estd. Vide Sec.3 of the UGC
Act,1956 under notification # F.12-23/63.U-2 of Jun 18,1964

© 2015 BITS-Library, BITS-Hyderabad, India.