Amazon cover image
Image from Amazon.com

Extreme-temperature and harsh-environment electronics : physics, technology and applications / Vinod Kumar Khanna.

By: Contributor(s): Material type: TextTextSeries: IOP (Series). Release 3. | IOP expanding physicsPublisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2017]Description: 1 online resource (various pagings) : color illustrationsContent type:
  • text
Media type:
  • electronic
Carrier type:
  • online resource
ISBN:
  • 9780750311557
  • 9780750311571
Subject(s): Additional physical formats: Print version:: No titleDDC classification:
  • 621.381 23
LOC classification:
  • TK7870.25 K534 2017eb
Online resources: Also available in print.
Contents:
Preface -- 1. Introduction and overview -- 1.1. Reasons for moving away from normal practices in electronics -- 1.2. Organization of the book -- 1.3. Temperature effects -- 1.4. Harsh environment effects -- 1.5. Discussion and conclusions
2. Operating electronics beyond conventional limits -- 2.1. Life-threatening temperature imbalances on Earth and other planets -- 2.2. Temperature disproportions for electronics -- 2.3. High-temperature electronics -- 2.4. Low-temperature electronics -- 2.5. The scope of extreme-temperature and harsh-environment electronics -- 2.6. Discussion and conclusions
part I. Extreme-temperature electronics -- 3. Temperature effects on semiconductors -- 3.1. Introduction -- 3.2. The energy bandgap -- 3.3. Intrinsic carrier concentration -- 3.4. Carrier saturation velocity -- 3.5. Electrical conductivity of semiconductors -- 3.6. Free carrier concentration in semiconductors -- 3.7. Incomplete ionization and carrier freeze-out -- 3.8. Different ionization regimes -- 3.9. Mobilities of charge carriers in semiconductors -- 3.10. Equations for mobility variation with temperature -- 3.11. Mobility in MOSFET inversion layers at low temperatures -- 3.12. Carrier lifetime -- 3.13. Wider bandgap semiconductors than silicon -- 3.14. Discussion and conclusions
4. Temperature dependence of the electrical characteristics of silicon bipolar devices and circuits -- 4.1. Properties of silicon -- 4.2. Intrinsic temperature of silicon -- 4.3. Recapitulating single-crystal silicon wafer technology -- 4.4. Examining temperature effects on bipolar devices -- 4.5. Bipolar analog circuits in the 25�C to 300�C range -- 4.6. Bipolar digital circuits in the 25�C to 340�C range -- 4.7. Discussion and conclusions
5. Temperature dependence of electrical characteristics of silicon MOS devices and circuits -- 5.1. Introduction -- 5.2. Threshold voltage of an n-channel enhancement mode MOSFET -- 5.3. On-resistance (RDS(ON)) of a double-diffused vertical MOSFET -- 5.4. Transconductance (gm) of a MOSFET -- 5.5. BVDSS and IDSS of a MOSFET -- 5.6. Zero temperature coefficient biasing point of MOSFET -- 5.7. Dynamic response of a MOSFET -- 5.8. MOS analog circuits in the 25�C to 300�C range -- 5.9. Digital CMOS circuits in -196�C to 270�C range -- 5.10. Discussion and conclusions
6. The influence of temperature on the performance of silicon-germanium heterojunction bipolar transistors -- 6.1. Introduction -- 6.2. HBT fabrication -- 6.3. Current gain and forward transit time of Si/Si1-xGex HBT -- 6.4. Comparison between Si BJT and Si/SiGe HBT -- 6.5. Discussion and conclusions
7. The temperature-sustaining capability of gallium arsenide electronics -- 7.1. Introduction -- 7.2. The intrinsic temperature of GaAs -- 7.3. Growth of single-crystal gallium arsenide -- 7.4. Doping of GaAs -- 7.5. Ohmic contacts to GaAs -- 7.6. Schottky contacts to GaAs -- 7.7. Commercial GaAs device evaluation in the 25�C to 400�C temperature range -- 7.8. Structural innovations for restricting the leakage current of GaAs MESFET up to 300�C -- 7.9. Won et al threshold voltage model for a GaAs MESFET -- 7.10. The high-temperature electronic technique for enhancing the performance of MESFETs up to 300�C -- 7.11. The operation of GaAs complementary heterojunction FETs from 25�C to 500�C -- 7.12. GaAs bipolar transistor operation up to 400�C -- 7.13. A GaAs-based HBT for applications up to 350�C -- 7.14. AlxGaAs1-x/GaAs HBT -- 7.15. Discussion and conclusions
8. Silicon carbide electronics for hot environments -- 8.1. Introduction -- 8.2. Intrinsic temperature of silicon carbide -- 8.3. Silicon carbide single-crystal growth -- 8.4. Doping of silicon carbide -- 8.5. Surface oxidation of silicon dioxide -- 8.6. Schottky and ohmic contacts to silicon carbide -- 8.7. SiC p-n diodes -- 8.8. SiC Schottky-barrier diodes -- 8.9. SiC JFETs -- 8.10. SiC bipolar junction transistors -- 8.11. SiC MOSFETs -- 8.12. Discussion and conclusions
9. Gallium nitride electronics for very hot environments -- 9.1. Introduction -- 9.2. Intrinsic temperature of gallium nitride -- 9.3. Growth of the GaN epitaxial layer -- 9.4. Doping of GaN -- 9.5. Ohmic contacts to GaN -- 9.6. Schottky contacts to GaN -- 9.7. GaN MESFET model with hyperbolic tangent function -- 9.8. AlGaN/GaN HEMTs -- 9.9. InAlN/GaN HEMTs -- 9.10. Discussion and conclusions
10. Diamond electronics for ultra-hot environments -- 10.1. Introduction -- 10.2. Intrinsic temperature of diamond -- 10.3. Synthesis of diamond -- 10.4. Doping of diamond -- 10.5. A diamond p-n junction diode -- 10.6. Diamond Schottky diode -- 10.7. Diamond BJT operating at <200�C -- 10.8. Diamond MESFET -- 10.9. Diamond JFET -- 10.10. Diamond MISFET -- 10.11. Discussion and conclusions
11. High-temperature passive components, interconnections and packaging -- 11.1. Introduction -- 11.2. High-temperature resistors -- 11.3. High-temperature capacitors -- 11.4. High-temperature magnetic cores and inductors -- 11.5. High-temperature metallization -- 11.6. High-temperature packaging -- 11.7. Discussion and conclusions
12. Superconductive electronics for ultra-cool environment -- 12.1. Introduction -- 12.2. Superconductivity basics -- 12.3. Josephson junction -- 12.4. Inverse AC Josephson effect : Shapiro steps -- 12.5. Superconducting quantum interference devices -- 12.6. Rapid single flux quantum logic -- 12.7. Discussion and conclusions
13. Superconductor-based microwave circuits operating at liquid-nitrogen temperatures -- 13.1. Introduction -- 13.2. Substrates for microwave circuits -- 13.3. HTS thin-film materials -- 13.4. Fabrication processes for HTS microwave circuits -- 13.5. Design and tuning approaches for HTS filters -- 13.6. Cryogenic packaging -- 13.7. HTS bandpass filters for mobile telecommunications -- 13.8. HTS JJ-based frequency down-converter -- 13.9. Discussion and conclusions
14. High-temperature superconductor-based power delivery -- 14.1. Introduction -- 14.2. Conventional electrical power transmission -- 14.3. HTS wires -- 14.4. HTS cable designs -- 14.5. HTS fault current limiters -- 14.6. HTS transformers -- 14.7. Discussion and conclusions
part II. Harsh-environment electronics -- 15. Humidity and contamination effects on electronics -- 15.1. Introduction -- 15.2. Absolute and relative humidity -- 15.3. Relation between humidity, contamination and corrosion -- 15.4. Metals and alloys used in electronics -- 15.5. Humidity-triggered corrosion mechanisms -- 15.6. Discussion and conclusions
16. Moisture and waterproof electronics -- 16.1. Introduction -- 16.2. Corrosion prevention by design -- 16.3. Parylene coatings -- 16.4. Superhydrophobic coatings -- 16.5. Volatile corrosion inhibitor coatings -- 16.6. Silicones -- 16.7. Discussion and conclusions
17. Preventing chemical corrosion in electronics -- 17.1. Introduction -- 17.2. Sulfidic and oxidation corrosion from environmental gases -- 17.3. Electrolytic ion migration and galvanic coupling -- 17.4. Internal corrosion of integrated and printed circuit board circuits -- 17.5. Fretting corrosion -- 17.6. Tin whisker growth -- 17.7. Minimizing corrosion risks -- 17.8. Further protection methods -- 17.9. Hermetic packaging -- 17.10. Hermetic glass passivation of discrete high-voltage diodes, transistors and thyristors -- 17.11. Discussion and conclusions
18. Radiation effects on electronics -- 18.1. Introduction -- 18.2. Sources of radiation -- 18.3. Types of radiation effects -- 18.4. Total dose effects -- 18.5. Single event effects -- 18.6. Discussion and conclusions
19. Radiation-hardened electronics -- 19.1. The meaning of 'radiation hardening' -- 19.2. Radiation hardening by process (RHBP) -- 19.3. Radiation hardening by design -- 19.4. Discussion and Conclusions
20. Vibration-tolerant electronics -- 20.1. Vibration is omnipresent -- 20.2. Random and sinusoidal vibrations -- 20.3. Countering vibration effects -- 20.4. Passive and active vibration isolators -- 20.5. Theory of passive vibration isolation -- 20.6. Mechanical spring vibration isolators -- 20.7. Air-spring vibration isolators -- 20.8. Wire-rope isolators -- 20.9. Elastomeric isolators -- 20.10. Negative stiffness isolators -- 20.11. Active vibration isolators -- 20.12. Discussion and conclusions.
Abstract: Electronic devices and circuits are employed by a range of industries in testing conditions from extremes of high- or low-temperature, in chemically corrosive environments, subject to shock and vibration or exposure to radiation. This book describes the diverse measures necessary to make electronics capable of coping with such situations as well as to gainfully exploit any new phenomena that take place only under these conditions.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Institue of Physics Institue of Physics BITS Pilani Hyderabad 621.381 (Browse shelf(Opens below)) Available IOP00029
Total holds: 0

"Version: 20170301"--Title page verso.

Includes bibliographical references.

Preface -- 1. Introduction and overview -- 1.1. Reasons for moving away from normal practices in electronics -- 1.2. Organization of the book -- 1.3. Temperature effects -- 1.4. Harsh environment effects -- 1.5. Discussion and conclusions

2. Operating electronics beyond conventional limits -- 2.1. Life-threatening temperature imbalances on Earth and other planets -- 2.2. Temperature disproportions for electronics -- 2.3. High-temperature electronics -- 2.4. Low-temperature electronics -- 2.5. The scope of extreme-temperature and harsh-environment electronics -- 2.6. Discussion and conclusions

part I. Extreme-temperature electronics -- 3. Temperature effects on semiconductors -- 3.1. Introduction -- 3.2. The energy bandgap -- 3.3. Intrinsic carrier concentration -- 3.4. Carrier saturation velocity -- 3.5. Electrical conductivity of semiconductors -- 3.6. Free carrier concentration in semiconductors -- 3.7. Incomplete ionization and carrier freeze-out -- 3.8. Different ionization regimes -- 3.9. Mobilities of charge carriers in semiconductors -- 3.10. Equations for mobility variation with temperature -- 3.11. Mobility in MOSFET inversion layers at low temperatures -- 3.12. Carrier lifetime -- 3.13. Wider bandgap semiconductors than silicon -- 3.14. Discussion and conclusions

4. Temperature dependence of the electrical characteristics of silicon bipolar devices and circuits -- 4.1. Properties of silicon -- 4.2. Intrinsic temperature of silicon -- 4.3. Recapitulating single-crystal silicon wafer technology -- 4.4. Examining temperature effects on bipolar devices -- 4.5. Bipolar analog circuits in the 25�C to 300�C range -- 4.6. Bipolar digital circuits in the 25�C to 340�C range -- 4.7. Discussion and conclusions

5. Temperature dependence of electrical characteristics of silicon MOS devices and circuits -- 5.1. Introduction -- 5.2. Threshold voltage of an n-channel enhancement mode MOSFET -- 5.3. On-resistance (RDS(ON)) of a double-diffused vertical MOSFET -- 5.4. Transconductance (gm) of a MOSFET -- 5.5. BVDSS and IDSS of a MOSFET -- 5.6. Zero temperature coefficient biasing point of MOSFET -- 5.7. Dynamic response of a MOSFET -- 5.8. MOS analog circuits in the 25�C to 300�C range -- 5.9. Digital CMOS circuits in -196�C to 270�C range -- 5.10. Discussion and conclusions

6. The influence of temperature on the performance of silicon-germanium heterojunction bipolar transistors -- 6.1. Introduction -- 6.2. HBT fabrication -- 6.3. Current gain and forward transit time of Si/Si1-xGex HBT -- 6.4. Comparison between Si BJT and Si/SiGe HBT -- 6.5. Discussion and conclusions

7. The temperature-sustaining capability of gallium arsenide electronics -- 7.1. Introduction -- 7.2. The intrinsic temperature of GaAs -- 7.3. Growth of single-crystal gallium arsenide -- 7.4. Doping of GaAs -- 7.5. Ohmic contacts to GaAs -- 7.6. Schottky contacts to GaAs -- 7.7. Commercial GaAs device evaluation in the 25�C to 400�C temperature range -- 7.8. Structural innovations for restricting the leakage current of GaAs MESFET up to 300�C -- 7.9. Won et al threshold voltage model for a GaAs MESFET -- 7.10. The high-temperature electronic technique for enhancing the performance of MESFETs up to 300�C -- 7.11. The operation of GaAs complementary heterojunction FETs from 25�C to 500�C -- 7.12. GaAs bipolar transistor operation up to 400�C -- 7.13. A GaAs-based HBT for applications up to 350�C -- 7.14. AlxGaAs1-x/GaAs HBT -- 7.15. Discussion and conclusions

8. Silicon carbide electronics for hot environments -- 8.1. Introduction -- 8.2. Intrinsic temperature of silicon carbide -- 8.3. Silicon carbide single-crystal growth -- 8.4. Doping of silicon carbide -- 8.5. Surface oxidation of silicon dioxide -- 8.6. Schottky and ohmic contacts to silicon carbide -- 8.7. SiC p-n diodes -- 8.8. SiC Schottky-barrier diodes -- 8.9. SiC JFETs -- 8.10. SiC bipolar junction transistors -- 8.11. SiC MOSFETs -- 8.12. Discussion and conclusions

9. Gallium nitride electronics for very hot environments -- 9.1. Introduction -- 9.2. Intrinsic temperature of gallium nitride -- 9.3. Growth of the GaN epitaxial layer -- 9.4. Doping of GaN -- 9.5. Ohmic contacts to GaN -- 9.6. Schottky contacts to GaN -- 9.7. GaN MESFET model with hyperbolic tangent function -- 9.8. AlGaN/GaN HEMTs -- 9.9. InAlN/GaN HEMTs -- 9.10. Discussion and conclusions

10. Diamond electronics for ultra-hot environments -- 10.1. Introduction -- 10.2. Intrinsic temperature of diamond -- 10.3. Synthesis of diamond -- 10.4. Doping of diamond -- 10.5. A diamond p-n junction diode -- 10.6. Diamond Schottky diode -- 10.7. Diamond BJT operating at <200�C -- 10.8. Diamond MESFET -- 10.9. Diamond JFET -- 10.10. Diamond MISFET -- 10.11. Discussion and conclusions

11. High-temperature passive components, interconnections and packaging -- 11.1. Introduction -- 11.2. High-temperature resistors -- 11.3. High-temperature capacitors -- 11.4. High-temperature magnetic cores and inductors -- 11.5. High-temperature metallization -- 11.6. High-temperature packaging -- 11.7. Discussion and conclusions

12. Superconductive electronics for ultra-cool environment -- 12.1. Introduction -- 12.2. Superconductivity basics -- 12.3. Josephson junction -- 12.4. Inverse AC Josephson effect : Shapiro steps -- 12.5. Superconducting quantum interference devices -- 12.6. Rapid single flux quantum logic -- 12.7. Discussion and conclusions

13. Superconductor-based microwave circuits operating at liquid-nitrogen temperatures -- 13.1. Introduction -- 13.2. Substrates for microwave circuits -- 13.3. HTS thin-film materials -- 13.4. Fabrication processes for HTS microwave circuits -- 13.5. Design and tuning approaches for HTS filters -- 13.6. Cryogenic packaging -- 13.7. HTS bandpass filters for mobile telecommunications -- 13.8. HTS JJ-based frequency down-converter -- 13.9. Discussion and conclusions

14. High-temperature superconductor-based power delivery -- 14.1. Introduction -- 14.2. Conventional electrical power transmission -- 14.3. HTS wires -- 14.4. HTS cable designs -- 14.5. HTS fault current limiters -- 14.6. HTS transformers -- 14.7. Discussion and conclusions

part II. Harsh-environment electronics -- 15. Humidity and contamination effects on electronics -- 15.1. Introduction -- 15.2. Absolute and relative humidity -- 15.3. Relation between humidity, contamination and corrosion -- 15.4. Metals and alloys used in electronics -- 15.5. Humidity-triggered corrosion mechanisms -- 15.6. Discussion and conclusions

16. Moisture and waterproof electronics -- 16.1. Introduction -- 16.2. Corrosion prevention by design -- 16.3. Parylene coatings -- 16.4. Superhydrophobic coatings -- 16.5. Volatile corrosion inhibitor coatings -- 16.6. Silicones -- 16.7. Discussion and conclusions

17. Preventing chemical corrosion in electronics -- 17.1. Introduction -- 17.2. Sulfidic and oxidation corrosion from environmental gases -- 17.3. Electrolytic ion migration and galvanic coupling -- 17.4. Internal corrosion of integrated and printed circuit board circuits -- 17.5. Fretting corrosion -- 17.6. Tin whisker growth -- 17.7. Minimizing corrosion risks -- 17.8. Further protection methods -- 17.9. Hermetic packaging -- 17.10. Hermetic glass passivation of discrete high-voltage diodes, transistors and thyristors -- 17.11. Discussion and conclusions

18. Radiation effects on electronics -- 18.1. Introduction -- 18.2. Sources of radiation -- 18.3. Types of radiation effects -- 18.4. Total dose effects -- 18.5. Single event effects -- 18.6. Discussion and conclusions

19. Radiation-hardened electronics -- 19.1. The meaning of 'radiation hardening' -- 19.2. Radiation hardening by process (RHBP) -- 19.3. Radiation hardening by design -- 19.4. Discussion and Conclusions

20. Vibration-tolerant electronics -- 20.1. Vibration is omnipresent -- 20.2. Random and sinusoidal vibrations -- 20.3. Countering vibration effects -- 20.4. Passive and active vibration isolators -- 20.5. Theory of passive vibration isolation -- 20.6. Mechanical spring vibration isolators -- 20.7. Air-spring vibration isolators -- 20.8. Wire-rope isolators -- 20.9. Elastomeric isolators -- 20.10. Negative stiffness isolators -- 20.11. Active vibration isolators -- 20.12. Discussion and conclusions.

Electronic devices and circuits are employed by a range of industries in testing conditions from extremes of high- or low-temperature, in chemically corrosive environments, subject to shock and vibration or exposure to radiation. This book describes the diverse measures necessary to make electronics capable of coping with such situations as well as to gainfully exploit any new phenomena that take place only under these conditions.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader.

Vinod Kumar Khanna is an Emeritus Scientist at CSIR-Central Electronics Engineering Research Institute, Pilani, India, and Emeritus Professor at the Academy of Scientific and Innovative Research, India. He is former Chief Scientist and Head of the MEMS and Microsensors Group, CSIR-CEERI, Pilani.

Title from PDF title page (viewed on April 10, 2017).

There are no comments on this title.

to post a comment.
An institution deemed to be a University Estd. Vide Sec.3 of the UGC
Act,1956 under notification # F.12-23/63.U-2 of Jun 18,1964

© 2015 BITS-Library, BITS-Hyderabad, India.